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The stability of circular Couette flow with radial heating across a vertically oriented 
annulus with inner cylinder rotating and outer cylinder stationary is investigated 
using linear stability theory. Infinite aspect ratio and constant fluid properties are 
assumed and critical stability boundaries are calculated for a conduction-regime base 
flow. Buoyancy is included through the Boussinesq approximation and stability is 
tested with respect to both toroidal and helical disturbances of uniform wavenumber. 
Symmetries of the linearized disturbance equations based on the sense of radial 
heating and the sense of cylinder rotation and their effect on the kinematics and 
morphology of instability waveforms are presented. The numerical investigation is 
primarily restricted to radius ratios 0.6 and 0.959 at Prandtl numbers 4.35, 15 and 
100. The results follow the development of critical stability from Taylor cells at zero' 
heating through a number of asymmetric modes to axisymmetric cellular convection 
at  zero rotation. Increasing the Prandtl number profoundly destabilizes the flow in 
both wide and narrow gaps and the number of contending critical modes increases 
with increasing radius ratio. Specific calculations made to compare with the stability 
measurements of Snyder & Karlsson (1964) and Sorour & Coney (1979) exhibit good 
agreement considering the idealizations built into the linear stability analysis. 

1. Introduction 
The viscous fluid flow created between differentially rotating coaxial cylinders has 

provided a fertile testing ground for both linear and nonlinear stability theory. 
Beginning with the work of Taylor (1923) numerous experimental and theoretical 
studies on the transitions to and morphologies of supercritical circular Couette flow 
have appeared. The rich bifurcation diagram presented in the work of Andereck, Liu 
& Swinney (1986) becomes even more complex when one considers, for example, 
eccentrically oriented cylinders, superposed axial throughflow or radial heating, 
particularly in magnetohydrodynamic or non-Newtontian systems. Initial studies on 
thermally driven circular Couette flow, motivated by technological problems in the 
cooling of rotating electrical machinery, have been reviewed by Kreith (1968). 
Because of the high centripetal accelerations involved, early theoretical attacks 
neglected gravity and usually considered only axisymmetric disturbances in the limit 
of infinite aspect ratio. Such investigations by Yih (1961), Becker & Kaye (1962), 
Walowit, Tsao & Di Prima (1964), Bahl (1972), and Soundalgekar, Takhar & Smith 
(1981) showed that isothermal Taylor cells are destabilized (stabilized) by positive 
(negative) radial heating gradients across the gap. Roesner (1978) is credited as being 

t Permanent address : Helwan University, Faculty of Engineering Technology, El-Mattaria, 
Cairo, Egypt. 
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the first to  properly include the effect of gravity in the Boussinesq approximation 
but, like most of his predecessors, considered only axisymmetric disturbances. 
Roesner’s results contrast those neglecting gravity in that isothermal Taylor cells are 
stabilized by both positive and negative radial heating and his computed stability 
boundaries exhibit perfect symmetry with respect to the direction of the temperature 
gradient. There has been a renewed interest in the problem of radially heated 
rotating flows, partially from a continued effort to enhance the cooling of rotating 
machinery (Lee & Minkowycz 1989), but also with the aim of understanding and 
controlling instabilities in nematic liquid crystal systems (Barratt & Zuniga 1984), in 
chemical vapour deposition processes (Singer 1984) and in the solidification of pure 
metals (Vives 1988). Numerical studies of the effects of buoyancy on bifurcation 
phenomena in systems of small-to-moderate aspect ratio have recently been reported 
by Ball & Farouk (1986,1987,1988). Ball & Farouk (1989) also have presented a flow 
visualization study of buoyancy-induced transitions from a primary flow consisting 
of steady isothermal Taylor cells in a wide-gap vertical annulus of moderate aspect 
ratio. 

Although many experiments dealing with global heat transfer effects have been 
reported, those directed towards an understanding of stability and flow morphology 
are few in number. For large-aspect-ratio geometries we are aware of only two 
experimental studies sufficiently well-documented that a direct comparison with 
stability theory can be made. These are the measurements of Snyder & Karlsson 
(1964) and Sorour & Coney (1979) and even in the latter investigation unreported 
Prandtl numbers must be estimated. The present endeavour, in fact, was initiated in 
an attempt to predict the measurements of Snyder & Karlsson (1964) and to 
understand apparent conflicts with respect to the thermal stabilization of Taylor 
cells between their work and that of Sorour & Coney (1979). We pursue the infinite- 
aspect-ratio idealization, assume a uniform temperature contrast across the annular 
gap formed between vertical concentric cylinders and include rotation of the inner 
cylinder only. Proper account of gravity is taken within the limits of the Boussinesq 
approximation, different Prandtl numbers are considered and stability is tested with 
respect to both axisymmetric and non-axisymmetric (helical) disturbances. Pre- 
liminary aspects of this work have been reported by Weidman & Ali (1989) and a full 
account is given here. Introductory remarks in $2 lead to the mathematical 
formulation and numerical solution procedure in 5 3. Computed stability boundaries 
along with the associated disturbance wave characteristics presented in 5 4 is followed 
by a direct comparison of theory with existing measurements in $5 .  The discussion 
of results and concluding remarks are given in $6. 

2. Preliminary remarks 
The fluid-filled annulus under consideration and its ( r ,  # z) cylindrical coordinate 

system is sketched in figure 1 .  Cylinders of radius R, and R, a t  uniform temperatures 
and T, are concentrically disposed about the vertical z-axis. In  finite systems the 

geometry of the annulus is measured by both the radius ratio 7 = R,/R, and the 
aspect ratio r = L / d ,  where d = R, -R, is the gap width and L is the height of the 
cylinders. With k the unit vector in the positive z-direction, a uniform gravitational 
field - g k  is assumed, the inner cylinder rotates a t  constant angular velocity+ GI k 
and the outer cylinder remains stationary. The following brief review of certain 
aspects of (i) isothermal Taylor-Couette flow and (ii) natural convection in the 
absence of rotation is provided to recall the mechanisms triggering instability in the 
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FIGURE 1.  Vertical concentric cylinders and cylindrical coordinate system. The outer cylinder is 
stationary, the inner wall rotates at 0, and the temperature contrast is AT = T, - T,. 

separate systems, introduce governing non-dimensional parameters, and report 
results needed for future reference. 

The stability of viscous isothermal circular-Couette flow generated by rotation of 
the inner cylinder is controlled by three non-dimensional parameters : the radius 
ratio 7, the aspect ratio r, and the Taylor number T a  = 27252td4/v2(l -$), where v 
is the kinematic viscosity of the fluid. At a critical value of the Taylor number the 
action of centrifugal forces leads to an axisymmetric instability consisting of counter- 
rotating toroidal cells of uniform width stacked one above the other. The Taylor cells 
have zero phase speed and therefore do not propagate up or down the annulus. 
Stability predictions derived from analyses in the limit r+co are borne out by 
experiments in facilities of sufficiently large aspect ratio that end effects are 
suppressed. Comprehensive reviews of both theory and experiments on the stability 
of isothermal circular Couette flow have been given by Di Prima & Swinney (1984, 
Cognet (1984) and Stuart (1986). 

In the absence of rotation, natural convection between vertical differentially 
heated concentric cylinders depends crucially on the system aspect ratio and the 
magnitude of the imposed thermal heating. Early experimental studies, starting with 
the careful investigation by Eckert & Carlson (1961), fostered the identification of 
three distinct flow regimes in both planar and cylindrical gaps: conduction, 
transition and convection. The base flow for each of these regimes may be regarded 
as a single closed cell of fluid rising along the hot wall and descending along the cold 
wall. For circular cylinders maintained a t  different uniform temperatures, Thomas 
& de Vahl Davis (1970) place the transition regime in the range 

4oor < Ra < 30001- (r > 5 )  
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where Ra = qpd3AT/uv is the Rayleigh number, AT = the temperature 
contrast across the gap, p the fluid thermal expansion coefficient, 01 the fluid thermal 
diffusivity and g is gravity. Ra < 400r corresponds to the conduction regime and 
Ra > 3000r corresponds to the convection regime where axial boundary layers form 
along each cylinder wall. Although this criterion delineating the transition regime is 
reported strictly valid only for unity Prandtl number, the authors claim it is 
relatively insensitive to both the radius ratio and the Prandtl number Pr = v/a. Note 
that infinite aspect ratio immediately implies a conduction-regime base flow, as first 
noted by Batchelor (1951) for the analogous problem in two dimensions. 

Stability for this system is governed by four dimensionless parameters: G, Pr, r 
and 7. Here the Grashof number G = Ra/Pr = qpd3AT/v2 is chosen as the control 
parameter for the imposed radial heating. Numerical calculations by de Vahl Davis 
& Thomas (1969) and Lee, Korpela & Horne (1982) in finite geometries a t  O(1) 
Prandtl numbers with a heated inner wall show the evolution of axisymmetric flow 
to a multicellular instability which, like the isothermal Taylor instability, is 
composed of pairs of counter-rotating toroidal cells. These convective instabilities 
may be distinguished from Taylor vortices by their non-zero phase speed which 
results in a slow drift of the cellular pattern up the annular cavity. In  the limit F+ 
00, an analytical solution for the base flow in the conduction regime is readily 
obtained. A linearized Galerkin calculation testing the stability of this base flow 
against axisymmetric disturbances has been carried out by Choi & Korpela (1980). 
They found that the flow may be driven to instability by shear forces for Pr < 15 or 
by buoyancy forces for Pr > 15, approximately. The distinction between shear-driven 
and buoyancy-driven instabilities in convective systems of this type is due to Hart 
(1971). McFadden et al. (1984a) extended Choi & Korpela’s results by testing 
stability with respect to the first non-axisymmetric disturbance. They report that 
for air with Pr = 0.71 the most dangerous disturbance is helical for radius ratios 
0 < 7 < 0.44 but toroidal for 0.44 < 7 < 1,  and in either case instability is due to the 
action of shear forces. For water with Pr = 3.5 it is shown that the asymmetric shear 
mode a t  Pr = 0.7 1 is superseded by an axisymmetric buoyancy-driven instability 
when 0.03 < 7 < 0.16. Weidman & Mehrdadtehranfar (1985) have carried out 
experiments on the stability of natural convection in a vertical differentially heated 
annulus for base flows in the convection regime, but the only critical stability 
experiment reported for a conduction-regime base flow seems to be that of Choi & 
Korpela (1980) done a t  Pr = 0.71, r= 38.6 and 7 = 0.68. 

The aforementioned high-aspect-ratio experimental studies of Snyder & Karlsson 
(1964) and Sorour & Coney (1979) focused on the narrow-gap limit and were 
performed with the inner cylinder rotating and outer cylinder at rest. Snyder & 
Karlsson obtained measurements for both positive and negative radial heating a t  
r = 349, 7 = 0.959 and used water with a reported Prandtl number of 4.35 (but see 
$5.1). By holding the Grashof number constant and increasing the Taylor number, 
they found that on the average for IGI < 40, the flow is unstable to axisymmetric 
perturbations, while for IGI > 40 spiral cells appear with azimuthal wavenumber 
increasing with IGI. Also, for IGI < 40 the system is stabilized with respect to the 
adiabatic Taylor stability limit (Ta,), = Ta,(Q = 0)) and beyond IGl x 40 the flow 
becomes increasingly destabilized to  values of Ta, far below (Tu,),. Sorour & Coney 
performed measurements with a heated outer cylinder a t  large aspect ratio (r x 100) 
for two gaps at 7 = 0.911 and 7 = 0.948 using two different oils. Unfortunately, no 
Prandtl numbers were reported. They observed only axisymmetric instability and, 
in contrast with the earlier measurements of Snyder & Karlsson, found only 
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monotonic destabilization of Taylor cells. Sorour & Coney attributed this 
‘discrepancy ’ to the existence of a stabilizing density stratification in the 
experiments of Snyder & Karlsson. It appears that Sorour & Coney (1979) were not 
aware of the calculations by Roesner (1978) which had already confirmed the 
stabilizing effect of radial heating for the conditions of Snyder & Karlsson’s 
experiments, a t  least in the infinite-aspect-ratio limit. In any event, one must bear 
in mind that conclusions based on a direct comparison of results between these two 
experiments neglect possible effects arising from the large difference in Prandtl 
number between water and oil. 

A flow which combines both rotation and convection can be driven to instability 
by centrifugal, buoyancy or shear forces, acting separately or in concert. Obviously, 
the buoyancy-driven instability mechanism necessitates the inclusion of gravity, not 
only as it affects system stability but also as it determines the axial velocity field in 
the base flow. Numerical calculations in both infinite-aspect-ratio (Roesner 1978) 
and finite-aspect-ratio (Ball & Farouk 1987) systems have shown that radial heating 
stabilizes Taylor vortices. Roesner’s stability curve is symmetric with respect to the 
sense of radial heating and crosses the G = 0 axis a t  zero slope. Snyder & Karlsson’s 
stability measurements also exhibit near symmetry at  small Grashof numbers, but 
with discontinuous slope at zero Grashof number. 

3. Mathematical formulation and solution procedure 
3.1. Equations of motion and basejow 

The motion of a thermally active viscous fluid is governed by the equation of 
continuity, the Navier-Stokes equations and the energy equation. The Boussinesq 
approximation is invoked for the buoyancy term, but otherwise constant fluid 
properties are presumed. The equations are made dimensionless by scaling lengths 
with d ,  time with d 2 / v ,  azimuthal velocity with SZ, R,, radial and vertical velocities 
with U, = gPd2AT/v, temperature with AT = T, - T, ,  and the reduced pressure 
(thermodynamic pressure less the hydrostatic head) with p, q, where p is the fluid 
density. Subscripts 1 and 2 denote conditions at the inner and outer cylinders located 
a t  non-dimensional radii rl = q / ( l - q )  and r2 = 1/( 1 - T ) ,  respectively. The governing 
equations for the dimensionless velocities (u, v, w), pressure p and temperature 0 are 

The dimensionless parameters G and Pr appearing in the equations are the previously 
defined Grashof and Prandtl numbers. The swirl parameter S = SZ, RJU, appears 
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because of the difference in normalization between the azimuthal and meridional 
velocities, All computed stability results will be presented in terms of the Taylor 
number Ta = 2q212td4/v2(l - q 2 )  in lieu of S. The equations describing pure natural 
convection with velocities normalized by the convection velocity U, are obtained by 
setting S = 1. The classical Taylor-Couette problem with velocities normalized by 
Q1Rl is obtained by setting S = 1, 0 = 0 and replacing the Grashof number with 
[Ta( 1 + q)/2( 1 -?)I;. These reductions provide a means for checking the numerical 
code with previously reported stability calculations in the limiting cases of pure 
convection and pure rotation. 

The base flow solution in the conduction regime is found by assuming the motion 
to be steady, axisymmetric and independent of the axial coordinate. Under these 
conditions the equation of continuity is satisfied identically and conservation of mass 
is ensured by the integral constraint 

where an overbar signifies base flow conditions. The solution of (2) satisfying (3) with 
boundary conditions V =  @ =  1, = 0 a t  r = rl and V =  e =  8 = 0 a t  r = r2 yields 

where A = (l-q2)(l-3$)-4q41n(~),  and B =  16[(1-q2)2+(1-q4)1n(q)] are the 
constants in ( 4 4 .  It may be observed that the base flow is just a superposition of the 
azimuthal velocity for the classical Taylor problem (Chandrasekhar 1961) and the 
axial velocity and temperature fields for convection in the conduction regime (Choi 
& Korpela 1980). 

3.2. Disturbance equations 
The primitive variables are written as the sum of the base flow and a perturbed flow 
as follows: (i) = ($+ (?!)) exp[i(Kz-nq5+ait)+g,t]. ( 5 )  

P(r )  

I n  this formulation the disturbances are either toroidal (n  = 0) or spiral ( n  =k 0) with 
uniform axial wavenumber K, frequency -ai and growth rate a,. The radial 
eigenfunctions U(r) ,  V ( r ) ,  W(r) ,  O(r)  and P ( r )  are complex quantities. Substituting ( 5 )  
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into ( 2 ) ,  subtracting the base flow (4) and neglecting higher-order terms furnishes the 
linear stability equations 

dP inSGu 1dU [ l + n 2 ]  [Bins 2RGa] 
-- - (u+iKGm) U+G--- U---+ K 2 + -  u- - +- v, d2U 
dr2 dr  r r dr r2 r2 r 

(6a) 
d2 V inG inSGa 1dV 
dr2 Sr r r dr  
- = ( ~ + x G m )  v--p--V--- 

+ [ K 2 + -  ' ~ ~ ' ] V + ~ u + G [ ~ + $ ] U ,  (6b) 

inSGv W - @ - ! z + (  K 2 + g )  W ,  (6c) 
d2W dtx 
dr2 dr r r dr  

d2 0 d e  
dr2 dr  

- = ( B  + iKGa) W+ G- U+ XGP-- 

- = Pr(a+ X G m )  @+ Pr G- U-Pr  

These equations are to  be solved with homogeneous boundary conditions at  r = r1 
and r2.  The phase function (Kz - n$ + B~ t )  in (5) with critical solution values for n, K ,  
and vi completely determines the shape and kinematics of the disturbance flow 
patterns at neutral stability where B= = 0. Specifically, the non-dimensional axial 
propagation speed C, wavelength h normal to lines of constant phase, and inclination 
I++ of phase lines with respect to  the horizontal are given by 

C = -  - Bi A =  2R 1 ~ .  = tan-'( 2). 
K '  (n2/r2 +K2);' 

Note that the wavelength and inclination angle for the asymmetric disturbances 
depend on the radial coordinate; for a given mode of instability, the spiral 
wavelength (inclination) will be shorter (steeper) when observed a t  the inner wall 
than when observed a t  the outer wall. 

3.3. Symmetry properties of the disturbance equations 
Recalling that the dimensional temperature and axial velocity are normalized with 
the temperature contrast AT, the corresponding non-dimensional variables w and 0 
in (5) do not change sign when the sense of radial heating is reversed. A reversal of 
the angular velocity Q,, on the other hand, does alter the sign of the dimensionless 
angular velocity ZI in (5) even though the Taylor number remains unaffected. In  the 
absence of rotation, equations (7)  reduce to the free-convection system studied by 
McFadden et al. ( 1 9 8 4 ~ )  by setting S = 1 and B = aB//ar = 0. I n  this case there exists 
both a degeneracy and a symmetry of the solution to the eigenvalue problem. 
Assume, for example, that one has a solution [U,  V, W ,  0, P; G ,  K ,  v ,  n] to the 
disturbance equations for natural convection satisfying homogeneous boundary 
conditions at the cylinder walls. The substitutions V+- V and n+-n give a new 
solution set [U,  ( -  V ) ,  W ,  0, P; G ,  K ,  c, (-n)] satisfying the original system of 
equations and boundary conditions. From (7)  one finds that the orientation of the 
spirals is reversed and the direction of phase propagation remains the same. 

1 FLM 240 
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G < O  

(4 

FIQURE 2. Schematic diagram of the effects of the Dc degeneracy and the Sc(AT) heating symmetry 
on helical instabilities for natural convection. The spiral orientation and phase speed direction for 
(a) is that determined by numerical calculation. The remaining possibilities are a direct result of 
the degeneracy and symmetry. 

Therefore, the two solutions comprise a degenerate solution pair and this degeneracy 
property is denoted DC, the degeneracy for (natural) convection. Taking the complex 
conjugate (asterisk notation is employed) of the free-convection perturbation 
equations reveals a third solution set [( - U*), V*, W*, @*, P*;  (-G),  K ,  cr*, n]. This 
implies that, for the same temperature contrast IATI, every solution for a heated 
inner wall has a corresponding solution for a heated outer wall. According to (7) the 
only distinguishing feature between these two solutions is the reversed direction of 
axial phase propagation. We denote this symmetry property as Sc(AT), the 
symmetry with respect to radial heating for (natural) convection. Formally, we have 
proven the following results : 

DC degeneracy 
I f  [U,  V ,  W ,  8, P ;  G ,  K ,  cr, n ]  is a solution of the linearized disturbance equations 
describing the stability of natural convection in a differentially heated vertical 
annulus of infinite aspect ratio, then [U ,  ( - V ) ,  W ,  0, P ;  G ,  K ,  cr, ( - n ) ]  is also a 
solution. 
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S"(AT) symmetryt 
If [U,  V ,  W ,  0, P ;  G, K ,  u, n] is a solution of the linearized disturbance equations 
describing the stability of natural convection in a differentially heated vertical 
annulus of infinite aspect ratio, then [( - U*),  V*, W*,  Oh, P*; ( - G ) ,  K ,  B*, n] is 
also a solution. 
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Manifestations of the DC degeneracy and the Sc(AT)  symmetry are sketched in figure 
2 for appropriate combinations of (C, $) determined from critical solutions for ( B ~ ,  

n) reported in $4.2. By definition, G > 0 implies a relatively hot inner wall. Note that 
forward or reverse application of D" followed by SC(AT)  furnishes a fourth solution 
set [ ( -U*) ,  ( -V*) ,  W*, 0*, P*; ( - G ) ,  K ,  u*, ( -n)] ,  the disturbance waveform 
characteristics of which are depicted in figure 2(d). 

For Taylor-Couette flow with radial heating two symmetries are found. Suppose 
one has a solution [U, V ,  W ,  0,  P ;  Ta ,  G ,  K ,  B ,  n] of the full disturbance equations 
(6) satisfying homogeneous boundary conditions. The substitutions 0, --f - 0, and 
n i - n  yield another solution for which the orientation of the spirals is reversed but 
the phase speed remains the same. This solution pair is denoted Sc/'(SZ), the 
symmetry with respect to rotation for flow in the convecting/rotating system. Thus 
non-zero rotation of the inner cylinder breaks the DC degeneracy for free convection. 
Taking the complex conjugate of (6 )  one can identify a third solution for which both 
spiral inclination and axial phase speed are reversed. This symmetry property is 
denoted SCIr(AT), the symmetry with respect to radial heating for flow in the 
convecting/rotating system. Formally, these symmetries for radially heated 
Taylor-Couette flow may be written as follows: 

Sclr(0) symmetry 
If [U,  V ,  W ,  0,  P ;  Ta ,  G,  K ,  B ,  n] comprises a solution of the linearized disturbance 
equations describing the stability of flow in a differentially heated vertical annulus 
of infinite aspect ratio with inner cylinder rotating, then [U, ( -  V ) ,  W ,  0, P ;  Ta, 
G ,  K ,  a, (-n)] is the solution when the inner cylinder counter-rotates a t  the same 
speed. 

Sc/'(AT) symmetry 
If [U,  V ,  W ,  0,  P ;  Ta ,  G ,  K ,  u, n] comprises a solution of the linearized disturbance 
equations describing the stability of flow in a differentially heated vertical annulus 
of infinite aspect ratio with inner cylinder rotating, then [( - U*), V*, W*, 0*, P* ; 
Ta,  ( - G ) ,  K ,  u*, ( -n)]  is also a solution for the same rotation of the inner cylinder. 

The effects of the ScIr(SZ) and S"/'(AT) symmetries are depicted in figure 3 for 
appropriate combinations of (C, 9) determined by numerical solution. Forward or 
reverse application of the two symmetry operations yields the fourth solution set 
[( - U * ) ,  ( -  V*) ,  W*, 0*, P*; Ta ,  ( - G ) ,  K ,  u*, n] with spiral wave characteristics as 
sketched in figure 3 (d ) .  Note that the S""(AT) symmetry provides a formal proof for 
the symmetric stability boundary calculated by Rosener (1978) for axisymmetric 
disturbances and ensures this symmetry for all asymmetric modes as well. 

t This result was discovered through numerical computation and subsequently verified by a 
tedious study of the sixteen first-order ordinary differential equations describing linearized 
stability (Ali 1988). The more elegant proof given here is due to Dr Geoffrey McFadden of the 
National Institute of Standards and Technology, Gaithersburg, PA. 

3-2 
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W ( A r ,  8 s'/'(A7-) 8 

FIGURE 3. Schematic diagram of the effects of the SC/'(f2) rotation symmetry and the S'/'(AT) 
heating symmetry on helical instabilities for circular Couette flow with radial heating. The spiral 
orientation and phase speed direction for (a )  is tha t  determined by numerical calculation. The 
remaining possibilities are a direct result of the  two symmetries. 

3.4. Numerical solution procedure 

The usual method of eliminating the pressure by cross-differentiation and reducing 
the system to a set of first-order equations for the real and imaginary components of 
the primitive variables is extremely tedious. It is far simpler to follow Garg & 
Rouleau (1972) and Garg (1981) and introduce new complex velocities f ( r )  and g ( r )  
defined by 

f ( r )  = U(r)+iV(r), g(r )  = U(r)-iV(r). b)  

It is then fairly straightforward to derive the set of sixteen real first-order ordinary 
differential equations describing linear stability. For these the interested reader is 
referred to Ali (1988). The system is solved subject to homogeneous boundary 
conditions a t  r = rl and r2 using the linear boundary-value problem software package 
SUPORT (Scott & Watts 1977) in combination with the nonlinear equation solver 
SNSQE (SLATEC ; Powell 1970). To avoid singular matricies, the procedure described 
by Keller (1976) is followed wherein one of the complex boundary conditions, say 
W = 0 at r = r2,  is replaced by the boundary condition dW/dr = 1 a t  r = r2 .  For given 
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values of the parameters, a solution of the linear system can be determined which 
generally will not satisfy W = 0 a t  r = r2.  The two parameters chosen to be 
eigenvalues are then varied until both the real and imaginary parts of W(r)  are driven 
to zero at the outer boundary. The object of this study is to determine curves of 
neutral stability for which LT, = 0. Hence the eigenvalue problem may be written 

(9) 
symbolically as 

F(G,  Ta ,  Pr, K ,  L T ~ ,  n, 7)  = 0. 

The parameters Ta ,  Pr, K ,  n and are usually fixed and solution of the ordinary 
differential equations is obtained by iteration on the eigenvalue pair (G, ai). At fixed 
mode number a search is conducted to find the minimum Grashof number over all 
wavenumbers K ,  denoted here by G,. Critical conditions are then determined as the 
minimum G, over all positive and negative values of n, and the critical values so 
obtained are denoted G,, Ta,, K,  and (LT~),. In  some instances solutions were more 
readily obtained by fixing G, Pr, K ,  n and 7, and iterating on the eigenvalue pair (Ta, 
cri). Minimum values for either G, or Ta,  were determined by incrementing the 
wavenumber in steps AK = 0.01. The relative error incurred in the stepping 
procedure depends on the shape of the neutral stability curve in the vicinity of the 
minimum as well as its magnitude. An analysis of results shows that relative 
errors for the reported values of G, and Ta,  are on the order of 0.05% with a worst 
case of about 0.2%. Computations were performed in double precision on a Pyramid 
9OX or in single precision on a Cyber 205. 

3.5. Parameter selection and code testing 
Owing to the large number of parameters governing this problem, we limit the 
investigation primarily to  three Prandtl numbers, Pr = 4.35, 15 and 100, and two 
radius ratios, 7 = 0.60 and 0.959. The combination Pr = 4.35 a t  7 = 0.959 corresponds 
to the reported conditions for Snyder & Karlsson’s (1964) narrow-gap experiments 
in water, and this radius ratio is also considered a t  Pr = 100 to investigate the effect 
of fluid properties on the narrow-gap geometry. The combinations Pr = 15 and 
Pr = 100 a t  7 = 0.6 provide wide-gap examples corresponding to cases studied by 
Choi & Korpela (1980) in the pure-convection limit. The case Pr = 15 was selected 
because both buoyancy and shear forces are known to be in direct competition for 
triggering instability. The results of McFadden et al. (1984~)  show that for the 
parameters of this investigation computed stability boundaries must evolve from 
axisymmetric Taylor cells a t  G = 0 to axisymmetric shear-driven or buoyancy- 
driven instabilities a t  T a  = 0. 

The numerical code was tested by computing conditions for critical stability in the 
limiting cases of zero differential heating and zero cylinder rotation. A calculation of 
minimum Taylor numbers Tan for mode numbers 0 < n < 4 a t  selected radius ratios 
in the range 0.6 < 7 < 0.95 compared to within 0.01% with results published by 
Sparrow, Munro & Jonsson (1964), Walowit et al. (1964) and Roberts (1965). To 
compare with published results in the natural-convection limit, critical Grashof 
numbers (G,),, = G,(Q = 0) were computed a t  selected radius ratios and Prandtl 
numbers in the ranges 0.1 < 7 < 0.6 and 0 < Pr < 100 for n = 0 and 1. The results 
reported by McFadden et al. (1984~)  were reproduced within 0.01%, and generally 
1 YO agreement with the Galerkin calculations of Choi & Korpela (1980) was obtained. 
Also, guided by the latter investigation, entire neutral stability curves at Pr = 4.35, 
15 and 100 for modes n = 0 and 1 were generated in order to gain experience in 
locating new stability branches. This exercise proved invaluable because, although 
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the present solution procedure is more accurate than the Galerkin method, it has the 
disadvantage that a good initial guess for the eigenvalue pair is necessary to ensure 
convergence. 

4. Presentation of results 
Some general comments with respect to the overall results are given here. First, all 

critical conditions were found in the range 0.15 < K ,  < 4.0 and these O(1) values 
verify that the gap width d is the correct scale for the wavelength of the unstable 
modes. Second, by virtue of the S"(AT) and S""(AT) symmetries, the present 
computations were carried out only for G 2 0. Third, the critical spiral modes for 
G > 0 were always associated with positive values of n and gi, corresponding to 
positive spiral inclination and downward axial phase speed as sketched in figure 3 (a).  
Finally, not all the spiral modes for the narrow gap were located. As will become 
evident, the number of competing critical modes increases with increasing radius 
ratio. At 7 = 0.6 there were sufficiently few modes that the entire Ta,-G stability 
diagram a t  the three fixed Prandtl numbers could be completely determined with 
reasonable effort. For 7 = 0.959, however, as many as 55 critical modes were 
discovered. It was felt that the understanding gained by locating all the mode 
branches was not worth the intensive effort necessary to complete the task. 
Therefore, for the narrow gap only the first ten or so asymmetric modes were 
followed, the terminal spiral mode was located, and the nature of stability results for 
the intervening modes is inferred by interpolation. 

4.1. Neutral stability curves 
In the process of locating critical stability boundaries, neutral stability curves of Tu 
versus K or G versus K were generated for given values of Pr, 7 and n. We note a 
persistent feature observed during this search. Computations revealed that the usual 
parabolic open-loop Ta-K neutral stability curves were often accompanied by a set 
of closed-loop branches in a limited range of overlapping values of G as shown in 
figure 4 for Pr = 15 and n = 2. The closed-loop neutral curve in figure 4(a) is seen in 
figure 4(b) to encompass smaller loops that degenerate to a point at  G = 254 where 
Tu = 217 and K = 2.33. Beyond this limiting point we were not able follow solutions 
in Ta-K space but did locate them in G K  space by switching the eigenvalue pair 
from (Tu, gi) to (G, vi). The limit points were found to be associated with a turning 
point of the Ta-G stability curve as shown in figure 5 for a different case with Pr = 

100 and n = 2. As depicted by the inset drawings, the lower branch of the stability 
boundary is formed from minimum values of Fa, on the closed loops, while the upper 
branch is formed from minimum values of G ,  on the open loops. A curve fit to the 
stability boundary in figure 5 gives a turning-point value G x 50.3, virtually 
identical to that estimated for the degenerate point of the closed loops. This feature 
is a manifestation of the complicated three-dimensional topology of the stability 
curves in Ta-G-K space. Similar closed-loop stability maps have been reported by 
Hart (1971) for convection in an inclined heated box and by McFadden et al. (1984 b) 
in a study of the stability of crystal morphology driven by fluid flow in the melt. In 
the present calculations we were able to continue tracking the stability diagram 
beyond the degenerate point of the closed-loop stability curves by a change in the 
eigenvalue pair. 
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FIQURE 4. Neutral stability curves for mode 2 at Pr = 15 and 7 = 0.6. (a) Diagram showing 
simultaneous occurrence of open- and closed-loop branches at a = 300; (b )  enlarged view of the 
closed-loop neutral curves showing the evolution to their point of degeneracy at G x 254 where 
Ta x 211 and K x 2.33. 

Ta 

4.2. Critical stability results 
Sample computed critical Taylor numbers, Grashof numbers, mode numbers, 
wavenumbers and phase speeds for the (Pr,  7) combinations (4.35,0.6), (15,0.6), (100, 
0.6), (4.35,0.959) and (100,0.959) are listed in tables 1 (a)-1 ( e ) ,  respectively. The log- 
log stability diagram in figure 6 clearly exhibits the destabilizing effect of Prandtl 



66 M .  Ali and P. D. Weidman 

20 t I I I I I 

I Stable 
I 

0 1  I !  I I I I I 
45 55 65 75 

G 

F r a U R E  5.  Illustration of the turning point for mode 2 instability a t  Pr = 100 and q = 0.6. The 
turning point a t  G z 50.3 corresponds to the limit point for the closed-loop neutral stability curves 
shown in the lower inset. Minima from the closed Tu-K loops and the open G-K loops contribute 
critical points to the stability diagram below and above the turning point, respectively. 

number for the wide-gap geometry. Each stability boundary emanates from the 
same critical isothermal Taylor number (Ta,)o = 2572 calculated for 7 = 0.6. The 
critical curves progressively lose stability to spiral modes n = 1 ,  2, 3 and 4 with 
increased radial heating. Observe that each fourth spiral mode branch intersects its 
Prandtl-number-dependent axisymmetric convection mode branch in a virtually 
perpendicular manner. These branches are then followed at nearly constant Grashof 
number to the critical terminal values (GJ,, = 8354, 2209 and 644 corresponding to 
Pr = 4.35, 15 and 100, respectively, It can be inferred from the results of Choi & 
Korpela (1980) that for Pr = 4.35 instability evolves from centrifugally driven to 
shear driven as the stability boundary is traversed from low to high Grashof number, 
while for Pr = 100 i t  evolves from centrifugally driven to buoyancy driven. For 
Pr = 15 the evolution is from a centrifugal instability a t  low Grashof number to  one 
where buoyancy and shear forces compete a t  a similar level to trigger instability a t  
high Grashof number on the axisymmetric convection branch. Note also that t$e 
turning-point behaviour discussed in $4.1 gives rise to local double-valued solutions 
along the critical stability boundary for the n = 2 spiral mode at Pr = 15 and for 
both the n = 1 and n = 2 modes a t  Pr = 100. Moreover, this multiple-valued 
behaviour is evident on a much larger scale for Pr = 100. For example, if in an 
experiment one were to increase cylinder rotation from rest along a line of constant 
Grashof number in the neighbourhood G x 100, instability to the fourth spiral mode 
a t  low Taylor number would be encountered first. At a much elevated Taylor number 
the flow would experience restabilization and this in turn would be followed a t  yet 
higher Taylor number by a second transition to an axisymmetric instability. 

The stability boundaries for 7 = 0.959given in figure 7 also exhibit strong Prandtl- 
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0.2611 (+04) 
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0.9084 
0.3803 
0.1283 
0.1224 
0.0000 

0.2572 
0.2595 
0.2586 
0.1763 
0.1111 
0.6130 
0.2688 
0.2373 
0.0000 

0.2572 
0.2000 
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0.1800 (+04j 
0.1550 (+04) 
0.1000 ( + 03) 
0.4129 (+01) 
0.1831 (+01) 
0.9183 (+00) 
0.2000 (+01) 
0.0000 ( + 00) 

0.1744 ( + 04) 
0.1736 (+04) 
0.1717 (+04) 
0.1643 ( + 04) 
0.1563 (+04) 
0.1495 ( + 04) 
0.1393 ( + 04) 
0.1274 (+04) 
0.1193 (+04) 
0.9558 ( + 03) 
0.6444 ( + 02) 
0.0000 ( + 00) 

0.1744 
0.2816 
0.1200 
0.2384 
0.2500 
0.1255 
0.1000 
0.5000 
0.5000 
0.3000 
0.3000 

+ 04) 
+ 03) 
+ 03) 
+ 02) 
+ 02) 
+ 02) 
+ 02) 
+01) 
+01) 
+01) 
+01) 

0.3000 (+01) 
0.1141 (+01) 
0.1201 ( + O O )  
0.0000 ( + 00) 

Gc 
0.0000 ( + 00) 
0.1500 ( + 02) 
0.5000 ( + 02) 
0.7200 ( + 02) 
0.3000 ( + 03) 
0.5000 ( + 03) 
0.7000 ( + 03) 
0.3000 ( + 04) 
0.8324 ( + 04) 
0.8354 ( + 04) 

0.0000 ( + 00) 
0.5000 ( + 02) 
0.5500 ( + 02) 
0.1500 ( + 03) 
0.2800 ( + 03) 
0.3200 ( + 03) 
0.7000 (+03) 
0.2202 ( + 04) 
0.2209 (+04) 

0.0000 ( + 00) 
0.5481 (+02) 
0.8150 (+02) 
0.1225 ( + 03) 
0.6037 ( + 02) 
0.5300 ( + 02) 
0.7000 (+02) 
0.2000 (+03) 
0.6422 (+03) 
0.6436 ( + 03) 

0.0000 (+OO) 
0.2500 (+02) 
0.5000 ( + 02) 
0.1300 (+03) 
0.2000 ( + 03) 
0.2500 (+ 03) 
0.3300 ( + 03) 
0.4200 ( + 03) 
0.4750 (+03) 
0.7000 (+03) 
0.7850 (+04) 
0.7865 (+04) 

0.0000 ( + 00) 
0.4000 ( + 02) 
0.4426 ( + 02) 
0.5000 ( + 02) 
0.4560 (+02) 
0.4600 (+02) 
0.4591 (+02) 
0.4857 (+02) 
0.4665 ( + 02) 
0.4919 ( + O n )  
0.4723 ( + 02) 
0.4683 (+02) 
0.5500 (+02) 
0.6000 (+03) 
0.7375 (+03) 

Kc 
0.3130 (+01) 
0.3150 (+01) 
0.3150 (+01) 
0.3150 (+01) 
0.2570 (+01) 
0.2340 (+01) 
0.1880 (+01) 
0.4500 ( + 00) 
0.2730 (+01) 
0.2750 (+01) 

0.3130 (+01) 
0.3110 (+01) 
0.3100 (+01) 
0.31 10 ( + 01) 
0.1680 (+01) 
0.1690 (+01) 
0.7700 ( + 00) 

0.1850 (+01) 

0.3150 (+01) 
0.3050 (+01) 
0.3020 (+01) 
0.3000 (+01) 
0.3200 (+01) 
0.1710 (+01) 
0.1300 (+01) 
0.4900 ( + 00) 
0.2500 ( + 01) 

0.1900 (+01) 

0.2600 

0.3150 
0.3120 
0.3100 
0.3010 
0.2950 
0.2890 
0.2800 
0.2700 
0.2670 
0.2100 
0.3300 
0.2750 

0.3150 
0.3150 
0.2500 
0.1600 
0.2250 

+ 01) 

+01) 
+01) 
+01) 
+01) 
+01) 
+01) 
+01) 
+01) 
+01) 
+01) 
+ 00) 
+01) 

+01) 
+01) 
+ 01) 
+01) 
+01) 

0.2000 (+01) 
0.2150 (+01) 
0.1700 (+01) 
0.1950 (+01) 
0.1690 (+01) 
0.1950 (+01) 
0.2140 (+01) 
0.1400 (+01) 
0.1900 ( + 00) 
0.2450 (+01) 

0.0000 ( +OO) 
-0.1484 (+OO) 
-0.5029 (+00) 
-0.7376 (+OO) 

0.1296 ( + 02) 
0.1879 (+02) 
0.1867 ( + 02) 
0.1611 (+02) 

- 0.3549 ( + 02) 
-0.3572 (+02) 

0.0000 ( + 00) 
-0.1486 (+01) 
-0.1650 (+01) 

0.1316 (+02) 
0.6589 ( + 01) 
0.7532 (+01) 
0.7200 ( + 01) 

-0.3600 ( + 02) 
-0.3526 ( + 02) 

0.0000 ( + 00) 
-0.2021 (+01) 
-0.2724 (+01) 
-0.3787 (+01) 

0.2960 (+01) 
0.1265 (+01) 
0.1259 (+01) 
0.1344 ($01) 

-0.1480 (+02) 
-0.1537 

0.0000 
0.3526 
0.8751 
0.1265 
0.1635 
0.1996 
0.2301 
0.2558 

+ 02) 

+ 00) 
+01) 
+01) 
+ 02) 
+ 02) 
+ 02) 
+ 02) 
+ 02) 

0.2826 (+02) 
0.2814 ( + 02) 
0.4269 ( + 02) 

-0.2830 (+01) 

0.0000 ( + 00) 
0.2489 (+01) 
0.2218 (+01) 
0.1482 ($01) 
0.2024 (+01) 
0.1793 (+01) 
0.1921 (+01) 
0.1585 (+01) 
0.1811 (+01) 
0.1579 (+01) 
0.1754 (+01) 
0.1929 (+01) 
0.1445 (+01) 
0.1948 (+01) 

- 0.1492 ( + 02) 

TABLE 1. Sample calculations of critical Taylor numbers Tu,, Grashof numbers G,, wavenumbers 
K ,  and frequencies ( -g,)c at each mode number n for (a) g = 0.6 and Pr = 4.35. (b) g = 0.6 and 
Pr = 15; ( c )  g = 0.6 and Pr = 100; ( d )  g = 0.959 and Pr = 4.35; (e) g = 0.959 and Pr = 100. 
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geometry at  7 = 0.959. Dotted line shows the inferred contribution of the missing modes. 
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FIGURE 8. Radius-ratio variation of the critical stability boundaries for Pr = 4.34. Arrows indicate 
the direction of increasing 7. Dotted line shows the inferred contribution of the missing modes for 
7 = 0.959. 

number stabilization. Here the critical curves originate from (Ta,), = 1744, bifurcate 
across more than 50 spiral modes to intersect the natural-convection branches which 
are then followed to their terminal values (G,),  = 7865 and 737.5 corresponding to 
Pr = 4.35 and 100, respectively. We have located only the first eight modes for 
Pr = 4.35 and the first 12 modes for Pr = 100. A search along the convection 
branches shows that the spiral modes terminate a t  n = 52 for Pr = 4.35 and n = 55 
for Pr = 100. As in figure 6, the terminating spiral modes make an approximately 
perpendicular intersection with their respective convection branches and this 
information has been used to sketch the interpolated stability boundary (dotted 
curves) for the missing spiral modes in figure 7. The successively smaller contributions 
from the higher mode numbers in the log-log presentation and the short sections 
corresponding to the terminal spiral modes suggest that all intermediate modes will 
be present in ordered sequence along the critical stability boundaries. Ali (1988) has 
shown that a partial collapse of the Prandtl-number-dependent stability boundaries 
in figures 6 and 7 may be obtained by plotting Tu, against Rayleigh number instead 
of Grashof number. Figure 8 shows the effect of radius ratio a t  Pr = 4.35 with 
directions of increasing T,I indicated by the arrows. Increasing the radius ratio 
produces destabilization in regions A and C and stabilization in the intermediate 
region B. Similar results are found for Pr = 100. 

The evolution of critical axial phase speeds, disturbance wavelengths and spiral 
inclination angles along the stability boundary are given in figures 9, 10 and 11, 
respectively. These figures compare wide- and narrow-gap results a t  Pr = 4.35. The 
values for A, and 9, were computed from equations ( 7 b ,  c) at  a radial position very 
near the outer cylindrical wall. Thus the spiral wavelengths and inclination angles 
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are indicative of what one would observe from outside a transparent annulus using 
particle suspensions to visualize the flow (cf. Weidman 1989) in a laboratory 
experiment. In  these figures the interpolated contributions from missing spiral modes 
are indicated by the dotted lines. The axial phase speeds presented in figure 9 show 
that radial heating imparts a slight upward drift to the Taylor cells, but bifurcation 
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FIQURE 10. A comparison of the evolution of wavelengths normal to the phase lines across (a) the 
four spiral modes for 7 = 0.6 and ( b )  the 52 spiral modes for 11 = 0.959 at  Pr = 4.35. The dotted 
line shows the inferred contribution of the missing modes for 7 = 0.959. 

to the spiral modes a t  higher Grashof number induces successively stronger 
downward axial propagation speeds with weak discontinuities across each transition. 
The final transition to  natural convection leaves each system in a state of slow 
upward drift of toroidal cells. Maximum axial phase speeds for the terminal spiral 
modes on the order of C, x - 100 are observed for both wide and narrow gaps. 
Instability wavelengths presented in figure 10 increase from A, x 2.0 for isothermal 
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FIQURE 11. A comparison of the evolution of spiral inclination angles across (a) the four spiral 
modes for 7 = 0.6 and (b) the 52 spiral modes for 7 = 0.959 at Pr = 4.35. The dotted line shows 
the inferred contribution of the missing modes for 71 = 0.959. 

and weakly heated Taylor cells across the spiral modes to maximum values A, w 3.9 
for 7 = 0.6 and A, w 2.9 for 7 = 0.959. One observes, particularly for the wide gap in 
figure lO(a), that the wavelengths of successive helical modes grow continuously and 
then suddenly shrink to admit a new counter-rotsating cell pair into the annulus. It 
is interesting to note that the wavelength of the terminal free-convection mode is 
only slightly larger than the wavelength of the initial Taylor vortex mode in both the 
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FIQURE 12. Evolution of the disturbance velocity vector fields in a meridional section at instability 
for 71 = 0.6 and Pr = 4.35. The left wall of each figure locates the outer cylinder. Vertical 
wavelengths have been scaled to equal height. The actual wavelengths can be computed from the 
critical conditions: (a)  Ta, = 2572, G, = 0, K ,  = 0.313; ( b )  Ta, = 2573, G, = 15, K, = 3.15; (c) 
Ta, = 2109, G, = 200, K ,  = 2.90; ( d )  Ta, = 908, G, = 500, K ,  = 2.34; (e) Ta, = 380, G, = 700, 
K,  = 1.88; Cfl Ta, = 123, G, = 8000, K ,  = 0.17; (9 )  Ta, = 50, G, = 8325, K ,  = 2.75; (h )  Ta, = 0, 
G, = 8354, K ,  = 2.75. 

wide- and narrow-gap configurations. Figure 11 shows the evolution of spiral 
inclination angle. A t  both values of 17 the heated horizontal Taylor cells give way to 
spirals which tilt successively upward with the admission of each new helical wave. 
Note that the terminal spiral modes become nearly vertical just before the final 
abrupt transition to horizontal convection cells. 

Plotted results for C,, A, and $, showing the influence of Prandtl number for the 
wide gap at rj = 0.6 are given in Weidman & Ali (1989). Apart from the n = 1 mode 
branches, which exhibit curious multiple-valued behaviour, the evolution of these 
quantities a t  Pr = 100 is qualitatively the same as those displayed in figures 9(a), 
lO(a) and 11 (a )  for Pr = 4.35. That is, the cells of a given spiral mode gradually 
expand and then suddenly contract when a new wave is admitted, and the spirals tilt 
continuously upward becoming nearly vertical in the fourth spiral mode. The only 
fundamental difference is that the axial phase speeds for the spiral waves a t  Pr = 100 
are an order of magnitude smaller than their counterparts at Pr = 4.35, with the 
maximum speed for the fourth spiral mode being only C, x -9.0. 

We conclude this section with a presentation of disturbance temperature and 
disturbance velocity vector fields for Pr = 4.35 a t  7 = 0.6. The evolution of these 
fields projected onto a meridional section over one vertical wavelength are displayed 
in figures 12 and 13. The vertical wavelengths in each frame have been scaled to a 
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n = O  n = l  n = 2  n = 3  n = 4  n = 0 Convection 

FIGURE 13. Evolution of the disturbance temperature contours in a meridional section a t  
instability for 7 = 0.6 and Pr = 4.35. The left wall of each figure locates the outer cylinder. See 
caption of figure 12 for critical conditions. 

Taylor n = l  n = 2  

n = 3  n = 4  Convection 

FIGURE 14. Evolution of disturbance velocity vector field projected on a cylindrical plane very near 
the outer cylinder for 7 = 0.6 and Pr = 4.35. See caption of figure 12 for critical conditions. 
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FIGURE 15. (a) Small-Grashof-number stability boundaries for the axisymmetric mode and the first 
asymmetric mode at  7 = 0.959 for selected Prandtl numbers. The region of Grashof stabilization 
of isothermal Taylor vortices is given by the intersection of the mode boundaries at points A, B and 
C where the destabilizing n = 1 modes supercede the stabilizing n = 0 modes. ( 6 )  Region of Grashof- 
number stabilization (G, )  of isothermal Taylor vortices for wide and narrow gaps as a function of 
the Prandtl number. For the wide gap at 7 = 0.6 Taylor vortices are destabilized for Pr > 63.5. 

common height for ease of comparison. In the velocity vector fields portrayed in 
figure 12 the Grashof number increases from left to right following the evolution from 
isothermal Taylor cells through six examples of mixed convection to the final frame 
for pure convection. The intervening spiral modes exhibit skewed and overlapping 
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cells with the top of every cell tilted radially outwards. Figure 13 shows the evolution 
of disturbance temperature contours exactly out of phase with their disturbance 
velocity counterparts in figure 12. (Note the omission of the first frame corresponding 
to isothermal Taylor cells.) The neatly stacked temperature cells in figure 13(b) for 
slightly heated Taylor flow become skewed and slightly overlapping through the 
spiral modes. The strong temperature gradients a t  the gap centre in figure 13(g, h) 
is a manifestation of the shear-driven instability to which these axisymmetric modes 
correspond. In  figure 14 cylindrical projections of disturbance velocity vector fields 
around the entire circumference of the annulus calculated at a radial point very close 
to the outer cylinder are displayed. The equal vertical and horizontal scales in this 
presentation exhibit the true inclination of the phase lines. Note the steep inclination 
of the fourth spiral mode in figure 14m just prior to the transition to horizontal 
convection cells figure 14(h). 

4.3. Stabilization of isothermal Taylor vortices 

Motivated by apparent discrepancies between the experiments of Snyder & Karlsson 
(1964) and Sorour & Coney (1979) we have conducted a parameter study of the effects 
of Prandtl number on the stabilization of Taylor vortices induced by radial heating. 
The n = 0 results in tables 1 (a+) and figure 6 show that isothermal Taylor cells for 
y = 0.6 are stabilized by radial heating at Pr = 4.35 and 15, but destabilized at 
Pr = 100. To elucidate these effects further, stability boundaries a t  three elevated 
Prandtl numbers at low Grashof number for the axisymmetric and first asymmetric 
modes in the narrow gap are presented in figure 15 (a) .  We define the region of Taylor 
vortex stabilization by the Grashof number G, for which the quantity [Ta, - (Ta,),] 
is maximum. According to this definition G, depends on the location of a maximum 
in the stabilizing n = 0 branch, or on the intersection of that  branch with a 
destabilizing n = 1 branch as is the case a t  points A, B, and C in figure 15(a). Here 
it may be seen that the region of stabilization shrinks with increasing Prandtl 
number, but there is no evidence to  suggest that  destabilization will occur since the 
origin of the destabilizing mode is permanently fixed to a Taylor number above 
(Ta,), and the stabilizing axisymmetric-mode branches steepen continuously with 
increasing Prandtl number. A similar study was made for 7 = 0.6 and results for both 
radius ratios are presented in figure 15(b). Values of G, for y = 0.6 are due to 
intersections of the n = 0 and n = 1 branches a t  low Pr and to maxima in the n = 
0 branches at  high Pr. The curves in figure 15 (b )  show that for both gaps the extent 
of Grashof stabilization decreases with increasing Prandtl number. Computations for 
9 = 0.6 reveal that Taylor vortices are stabilized by radial heating at  least in the 
range 4.35 < Pr < 63.5 but destabilized for Pr > 63.5. For 9 = 0.959 stabilization is 
ensured for 4.35 < Pr < 200, and since above Pr = 200 there are no additional 
mechanisms apart from centripetal and buoyancy forces to alter the character of the 
stability curves in figure 15(a), it is inferred that radial heating stabilizes Taylor 
vortices for all Pr 2 4.35. The results in figure 15(b) ,  however, show that the range 
of stabilization for the narrow gap becomes vanishingly small as Pr + 00. 

5. Comparison with experiment 
5.1. The experiment of Snyder & Karlsson 

Snyder & Karlsson (1964) made careful measurements of the critical stability 
boundaries, wavenumbers, mode numbers and phase speeds with both positive and 
negative radial temperature gradients applied across the gap of an annulus with 
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r = 349 and 7 = 0.959. A constant average Prandtl number was achieved by 
maintaining constant mean temperature (T = 27.5 "C) for all experiments and 
uniformly heating one cylinder ;AT above the mean and cooling the opposite cylinder 
BAT below. I n  the course of analysing their results, we discovered that the Prandtl 
number for water a t  the reported mean temperature was in error. The correct value 
is Pr = 5.77. The maximum Rayleigh number for these experiments is x 
1800 which easily satisfies condition (1) for conduction-regime base flow in their 
large-aspect-ratio facility. The stability boundary obtained from new calculations 
performed for Pr = 5.77 at 7 = 0.959 are displayed as a solid line in figure 16 along 
with two sets of stability measurements by Snyder & Karlsson (1964). The 
experimentally observed transition boundaries between modes are indicated above 
the measured data points and the corresponding numerically computed transitions 
are indicated below the theoretical curve. Computed axial wavenumbers K, 
(discontinuous line curves) are compared with measured values (diamond symbols) 
a t  the onset of instability in figure 17(a). The dimensional angular rotation rate of 
spiral disturbances in the numerical calculations are determined from the equation 

I n  figure 17 ( b )  we compare computed (discontinuous curves) and measured (diamond 
symbols) critical angular velocities w, normalized by SZ,. The near-zero velocities for 
the weakly heated toroidal disturbances are omitted to facilitate a comparison of 
results on an enlarged scale. Both theory and experiment confirm that over a broad 
range of Grashof numbers the spiral disturbances rotate at very nearly which 
may be interpreted as the average angular velocity of the bounding cylinders. 

In  addition to the infinite-aspect-ratio idealization in the computations, 
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FIGURE 17. Comparison of critical (a) axial wavenumbers and ( b )  spiral rotation speeds between the 
numerically computed results for infinite-aspect-ratio (solid lines) and the measured data (solid 
diamonds) of Snyder & Karlsson (1964) taken for Pr = 5 . 7 7 , ~  = 0.959 and r = 349. Pu’ote that the 
faired dashed lines through the experimental data for G > 0 exhibit a sawtooth behaviour similar 
to that found in the numerical calculations. 

fundamental differences between the theory and experiment need mentioning. First, 
the experiments were attended by a small but finite density-stabilizing axial 
temperature gradient, whereas the stability calculations are for zero axial 
temperature gradient. Second, Snyder & Karlsson always observed an early 
transition to  a weak cat’s-eye instability with cells linked together vertically and 
centred a t  mid-gap. Bifurcation to fully developed toroidal and/or spiral cells filling 
the gap was observed as a second transition following the weak secondary cat’s-eye 
motion. Third, Snyder & Karlsson observed spirals composed of counter-rotating 
cells of non-uniform width (cell-width ratio about 3: 1). In  a visualization study of 
radially heated Taylor-Couette flow in air with r = 31.5 and 7 = 0.438, Ball & 
Farouk (1989) report non-uniform cell widths in the same approximate ratio for 
counter-rotating toroidal vortices observed after transition from a spiral mode. 
Features of this type cannot be captured in the present analysis, which a priori 
incorporates a periodic disturbance function enforcing uniform width cells in each 
counter-rotating vortex pair. 

In  spite of the above differences, the measured and computed results exhibit 
remarkably similar behaviour. Snyder & Karlsson observed stabilization of the 
Taylor vortex mode up to G ~ 5 0  for negative radial temperature gradients and 
G x - 30 for positive gradients. The present calculations also predict stabilization 
but only up to IG( = 5.5. The calculated r.m.s. deviation between measurement and 
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computation for the data plotted in figure 16 is 13.8%. Both experiment and theory 
exhibit the continuously destabilizing effect of the successively higher mode numbers 
that come into play with increasing values of /GI. The enhanced stability of the 
measurements relative to the numerically computed stability boundary may be 
attributed, at least in part, to the stable density stratification which accompanied 
their experiments. Although the calculated mode numbers are everywhere approxi- 
mately double those observed in the experiments, favourable agreement between 
theoretical and experimental axial wavenumbers in figure 17 ( a )  is observed. The 
r.m.s. deviation between experiment and theory for the wavenumber data is 4.4%. 
Good agreement between the measured and computed spiral rotation speeds in figure 
17 (b)  is also apparent, the r.m.8. deviation being only 2.0%. Moreover, the dashed 
lines faired through the experimental data at  positive values of G in figures 17 ( a )  and 
17 (b)  reveal the same sawtooth transition behaviour observed in the numerical 
calculations. Finally, it is to be noted that the four types of helical disturbances 
depicted in figure 3 are in one-to-one correspondence with the observations of Snyder 
& Karlsson (1964) a t  the four combinations of radial heating and inner cylinder 
rotation listed in their figure 9. 

5.2.  The experiment of Sorour & Coney 
Sorour & Coney (1979) reported relatively high-aspect-ratio (r x 100) stability 
measurements for two mineral (J. E. R. Coney, private communication) oils, in two- 
narrow gap geometries at 7 = 0.91 1 and 7 = 0.948 with inner cylinder rotating. These 
experiments were conducted by placing the apparatus in an oil bath whose 
temperature was carefully controlled. Increased radial heating was effected by 
raising the temperature of the bath and waiting until isothermal conditions were 
attained on each wall, the inner wall being cooler than the outer so that G < 0. A 
consequence of the experiment performed in this manner was that the average fluid 
temperature increased with increasing temperature contrast. Thus data points 
defining a stability curve at fixed 7 each have a different Prandtl number. Measured 
values of the critical Grashof numbers, Taylor numbers, mean temperatures and 
temperature contrasts for the experiments are given in Sorour’s (1977) Ph.D. thesis 
but thermal diffusivities were not reported. However, measured viscosity- 
temperature curves included in Sorour’s thesis made it possible for engineers a t  Pen 
Rico Oil Company to identify the paraffinic oils and determine (we believe quite 
accurately) the temperature dependence of missing fluid properties. A listing of non- 
dimensional parameters calculated for these experiments is given in Ali (1988). The 
results show that the Prandtl number for 7 = 0.948 decreases significantly with 
increasing !GI, yielding variations over the range 300 < Pr < 500 for ‘oil A’ and 500 
< Pr < 860 for ‘oil B ’. Critical wavelengths were not reported but flow visualizations 
were made to ascertain the mode of instability. 

Only the results for 7 = 0.948 are considered here since this radius ratio is most 
akin to that in the experiments of Snyder & Karlsson (1964). For these data we find 
(Ra)max z 1000 and condition (1)  ensures that the base flow was in the conduction 
regime. Figure 18 shows the experimental (dashed lines) and computed (solid lines) 
critical stability boundaries for these high-Prandtl-number fluids. One immediately 
notes the very small range of Grashof numbers covered by the experiments. It should 
be emphasized that computations were made for each specific parameter pair ( G ,  Pr)  
associated with each measured data point. Sorour & Coney report having observed 
only axisymmetric cells in their experiments for both oils. The stability calculations 
corroborate this result for oil B, but exhibit a critical stability boundary for oil A 
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FIGURE 18. Comparison of the numerically computed infite-aspect-ratio neutral stability 
boundaries (solid lines) with the variable-Prandtl-number measurements (dashed lines, n = 0) of 
Sorour & Coney (1979) taken for two different oils at 7 = 0.948 and r = 102. The Prandtl-number 
variations in the experimental data are determined to be 300 < Pr < 500 for ‘oil A’  and 500 < 
Pr < 860 for ‘oil B ’. 

composed of both n = 0 and n = 1 modes. The transition occurs a t  the third 
computed point near G = -0.8. Agreement with the experimental results of Sorour 
& Coney (1979) is less favourable than with the experiments of Snyder & Karlsson 
(1964). The r.m.s. deviation between computation and experiment is 22.2% for oil A 
and 23.4% for oil B. The measured stability boundaries are initially strongly 
destabilizing with respect to the critical value (!!“a& = 1758. The computed 
boundaries also exhibit destabilization, but only very weakly so. It is inferred from 
the narrow-gap-parameter study in figure 15 ( b )  that destabilization of Taylor cells 
in the numerical calculations is due solely to variable Prandtl-number effects 
when dPr/dlGI < 0. If the data possessed Prandtl-number variability of the form 
dPr/dJGI 2 0, a weak stabilization of Taylor cells would be computed. Some 
qualitative agreement may be found in the fact that the stability boundary for oil B 
lies below the boundary for oil A in both theory and experiment. 

In  contrast with the results in figure 16, the measured data of Sorour & Coney in 
figure 18 lie below the numerically computed stability boundaries. It is difficult to 
explain why the computations yield results decidedly more stable than Sorour & 
Coney’s measurements. The fundamental difference between theory and experiment 
in both comparisons lies in the infinite-aspect-ratio and constant-fluid-property 
idealizations built into the linear stability analysis. While the aspect ratios in each 
experiment were large, the facility employed by Snyder & Karlsson had an aspect 
ratio 3.5 times that of Sorour & Coney. To compare fluid property variability in the 
experiments, we have calculated the maximum Prandtl-number variation across the 
gap. The maximum variation in Prandtl number in the experiments of Snyder & 
Karlsson was 15% while that for Sorour & Coney’s experiment was 40%. The 
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relative importance of these differences, or even the direction in which they might 
displace a stability boundary, is not easy to assess. 

6. Discussion and conclusion 
The primary results of this investigation are the stability boundaries displayed in 

figures 6 and 7. Since the ordinate Ta,  and the abscissa G are both independent of 
the thermal diffusivity a, the influence of a is directly observed through variation of 
the Prandtl number in these figures. The fundamental conclusion is that increasing 
the Prandtl number decreases system stability. In figure 8 the radius ratio 7 appears 
both implicitly in the definition of Ta, and explicitly as a parameter. This radius- 
ratio-dependent Taylor number provides a relatively good collapse of the numerical 
results for Pr = 4.35 and Pr = 100, but does not show explicitly how the radius ratio 
affects system stability. In Ali (1988) the direct influence of 7 is seen in a plot of the 
radius-ratio-independent Taylor number T,  = (a, d2/u)' versus Grashof number. 
That stability diagram shows unequivocably that increasing 7 markedly decreases 
system stability, primarily by reducing T, across the entire range of radial heating. 

A second important finding in this study are the S"/'(Q) and the SC/'(AT) 
symmetries depicted in figure 3 which confirm the four combinations of spiral mode 
instability reported by Snyder & Karlsson for a stationary outer cylinder. Two 
analogous symmetries for a rotating outer cylinder with stationary inner cylinder 
may be derived following the procedures outlined in $3.3. It is anticipated that these 
symmetries will be consistent with the remaining types of spiral instability arising 
from the four combinations of outer-cylinder rotation and radial heating listed in 
figure 9 of Snyder & Karlsson (1964). 

The dramatic increase in the number of critical spiral modes from nmax = 4 a t  
7 = 0.6 to nmax x 50 a t  7 = 0.959 can be shown to be purely a geometrical effect if one 
assumes that the wavelengths of the spiral modes scale with the gap width d .  In the 
limit that the spirals tilt 90" from horizontal, the maximum number of spiral modes 
which can be packed around the annulus is 

where A, is the critical wavelength calculated from equation 7 ( b )  a t  the outer 
cylinder wall. For both the wide and narrow gaps A, x 2 for Taylor vortices, and if 
one assumes that this scaling holds for the vertically oriented spirals as well, (11)  
gives nmax = 8 for 7 = 0.6 and n,, = 77 for 7 = 0.959. These values have the correct 
order of magnitude but the maximum number of critical modes is overestimated in 
each case. This means that the assumption A, x 2 for the terminal spiral modes is 
incorrect, as may be seen in figure 10. The terminal spiral wavelengths are more 
closely A, x 4 for 7 = 0.6 and A, x 3 for 7 = 0.959. In any event, A, is still an 0(1) 
parameter and the above argument shows that the increase in the maximum number 
of critical modes with increasing radius ratio is simply a consequence of wave-fitting 
around the annulus. 

The effect of radial heating on the relative stability of isothermal Taylor vortices 
has been determined for the two gaps over a range of Prandtl numbers. For = 0.6 
in the range 4.35 < Pr < 63.5, Taylor vortices are stabilized by radial heating but 
destabilization occurs when Pr > 63.5. For 7 = 0.959 stabilization is ensured for 
4.35 < Pr < 200. In  this latter case it is inferred that radial heating stabilizes Taylor 
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vortices for all Pr 4.35, but the extent of Grashof stabilization tcnds to zero 
asymptotically as Pr --f 00. 

The comparisons with laboratory measurements are considered favourable when 
one considers the infinite-aspcct-ratio, uniform-cell-width, and constant-fluid- 
property assumptions of the linear stability calculations. R.m.s. deviations between 
numerical calculation and experimental measurement of critical stability boundaries 
are about 14% for Snyder & Karlsson (1964) and 23% for Sorour & Coney (1979). 
Corroboration with Snyder & Karlsson’s wavenumber and angular phase speed 
measurements is much better, the r.m.s. deviations being 4.4% and 2 %, respectively. 
Even the detail of the sawtooth transitions is evident in the measured data in figure 
17, attesting to the care taken by the investigators in an experiment performed over 
twenty-five years ago. The primary thing to learn from the experiments is that in 
finite-aspect-ratio systems there is substantial mode-number stabilization. In  both 
experiments fewer unstable modes over comparable ranges of Grashof number are 
found. The rule of thumb for the comparison with Snyder & Karlsson (1964) is that 
half the number of critical spiral modes calculated by the infinite-aspect-ratio theory 
are found in the experiment a t  either positive or negative Grashof number. This 
strongly suggests that  the slightly supercritical flow in the experiments has actually 
experienced a subharmonic bifurcation. Another important distinction not captured 
by linear stability theory is the non-uniform width of the counter-rotating cells that 
comprise a single spiral wavelength. There is mounting evidence that a common 
stable configuration for heated spiral cells (Taylor 1923; Snyder & Karlsson 1964) 
and strongly heated toroidal cells (Ball & Farouk 1989) is the one for which the cell 
width ratio is approximately 3:  1 ,  with the wider cell having the same sense of 
vorticity as the base flow. The stable 3:  1 cell width configuration could well be a 
direct consequence of the supercritical subharmonic bifurcation. Spiral cells spurned 
from thermal gradients are manifestly different from those arising in isothermal 
circular Couette systems with a net axial flow through the annulus. In  the latter case 
Snyder (1962) has shown that the two cells which make up a disturbance wavelength 
are of equal width. 

The results of this study clearly point out the limitations of using linear stability 
theory for mixed convection in a confined system. It appears that  a complete finite- 
aspect-ratio Navier-Stokes simulation, perhaps one including tempcrature- 
dependent fluid properties, will be required to capture the full details of slightly 
supercritical instability in these complicated flows. 
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